Towards an open and synergistic framework for mapping global land cover

Author:

Zhao Jiyao1,Yu Le12ORCID,Liu Han1,Huang Huabing3,Wang Jie4,Gong Peng125

Affiliation:

1. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

2. Ministry of Education Ecological Field Station for East Asia Migratory Birds, Tsinghua University, Beijing, China

3. School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China

4. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

5. Department of Geography and Department of Earth Sciences, University of Hongkong, Hongkong, China

Abstract

Global land-cover datasets are key sources of information for understanding the complex inter-actions between human activities and global change. They are also among the most critical variables for climate change studies. Over time, the spatial resolution of land cover maps has increased from the kilometer scale to 10-m scale. Single-type historical land cover datasets, including for forests, water, and impervious surfaces, have also been developed in recent years. In this study, we present an open and synergy framework to produce a global land cover dataset that combines supervised land cover classification and aggregation of existing multiple thematic land cover maps with the Google Earth Engine (GEE) cloud computing platform. On the basis of this method of classification and mosaicking, we derived a global land cover dataset for 6 years over a time span of 25 years. The overall accuracies of the six maps were around 75% and the accuracy for change area detection was over 70%. Our product also showed good similarity with the FAO and existing land cover maps.

Funder

National Key R&D Program of China

National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility”

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3