Leveraging the potential of nature to meet net zero greenhouse gas emissions in Washington State

Author:

Robertson James C.1,Randrup Kristina V.2,Howe Emily R.1,Case Michael J.1,Levin Phillip S.13

Affiliation:

1. The Nature Conservancy, Seattle, WA, United States of America

2. The University of Washington, Seattle, WA, United States of America

3. School of Marine and Environmental Affairs, The University of Washington, Seattle, WA, United States of America

Abstract

The State of Washington, USA, has set a goal to reach net zero greenhouse gas emissions by 2050, the year around which the Intergovernmental Panel on Climate Change (IPCC) recommended we must limit global warming to 1.5 °C above that of pre-industrial times or face catastrophic changes. We employed existing approaches to calculate the potential for a suite of Natural Climate Solution (NCS) pathways to reduce Washington’s net emissions under three implementation scenarios: Limited, Moderate, and Ambitious. We found that NCS could reduce emissions between 4.3 and 8.8 MMT CO2eyr−1 in thirty-one years, accounting for 4% to 9% of the State’s net zero goal. These potential reductions largely rely on changing forest management practices on portions of private and public timber lands. We also mapped the distribution of each pathway’s Ambitious potential emissions reductions by county, revealing spatial clustering of high potential reductions in three regions closely tied to major business sectors: private industrial forestry in southwestern coastal forests, cropland agriculture in the Columbia Basin, and urban and rural development in the Puget Trough. Overall, potential emissions reductions are provided largely by a single pathway, Extended Timber Harvest Rotations, which mostly clusters in southwestern counties. However, mapping distribution of each of the other pathways reveals wider distribution of each pathway’s unique geographic relevance to support fair, just, and efficient deployment. Although the relative potential for a single pathway to contribute to statewide emissions reductions may be small, they could provide co-benefits to people, communities, economies, and nature for adaptation and resiliency across the state.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference78 articles.

1. Association of american plant food control officials, commercial fertilizer reports;AAPFCO,2014

2. Natural climate solutions are not enough;Anderson;Science,2019

3. The global tree restoration potential;Bastin;Science,2019

4. The current state and future directions of organic no-till farming with cover crops in canada, with case study support;Beach;Sustainability,2018

5. Restoring salmon habitat for a changing climate;Beechie;River Research and Applications,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3