Influence of tied-ridge with biochar amendment on runoff, sediment losses, and alfalfa yield in northwestern China

Author:

Mak-Mensah Erastus1,Sam Faisal Eudes2,Safnat Kaito Itoba Ongagna Ipaka3,Zhao Wucheng1,Zhang Dengkui1,Zhou Xujiao1,Wang Xiaoyun1,Zhao Xiaole1,Wang Qi1

Affiliation:

1. College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu Province, China

2. College of Food Science and Engineering, Gansu Agricultural University, Gansu Key Laboratory of Viticulture and Enology, Lanzhou, Gansu Province, China

3. College of Science, Gansu Agricultural University, Lanzhou, Gansu Province, China

Abstract

Background Loss of organic matter and mineral nutrients to soil erosion in rain-fed agriculture is a serious problem globally, especially in China’s Loess Plateau. As a result, increasing rainwater usage efficiency by tied-ridge-furrow rainwater harvesting with biochar is expected to improve agricultural productivity. Nonetheless, with limited knowledge on tied-ridge-furrow rainwater harvesting with biochar, small-scale farmers face the challenge of adoption, thus, the rationale for this study. Materials and methods A field experiment was conducted to determine the influence of open-ridging (OR) and tied-ridging (TR) with bio-degradable film on ridges and biochar in furrows on runoff, sediment losses, soil moisture, fodder yield, and water use efficiency (WUE) on sloped land, using flat planting (FP) without ridges and furrows as control, during alfalfa-growing year (2020). Results Runoff in flat planting (30%), open ridging (45%), and tied ridging (52%) were decreased with biochar to the extent where sediment was decreased in flat planting (33%), open ridging (43%), and tied ridging (44%) as well. The mean runoff efficiency was lower in flat planting (31%), open ridging (45%), and tied ridging (50%) in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, soil temperature on ridges of TR was higher than that on OR, which was higher than FP during alfalfa growing season. Soil temperature in furrows during alfalfa growing season in biochar and no-biochar plots were in the order FP > OR > TR. Mean soil water storage for FP, OR, and TR, in biochar plots was higher than in no-biochar plots. This indicates biochar has a beneficial impact on open riding. Total annual net fodder yield (NFY) was significantly (p = 0.00) higher in treatments in the order TR > OR > FP. Tied ridging had a significant effect on actual fodder yield (AFY) in biochar plots, while open ridging significantly affected AFY in no-biochar plots. Annual total mean NFY and AFY increased by 8% and 11% in biochar plots compared to no-biochar plots. In biochar and no-biochar plots, water use efficiency was in the order TR > OR > FP. Conclusively, water use efficiency was significantly higher (p = 0.01) in biochar plots compared to no-biochar plots. Conclusion When crop production is threatened by soil erosion and drought, mulched tied-ridge with biochar is beneficial to crop growth in rain-fed agriculture, according to this research. Smallholder farmers should be trained on applying this technique for water-saving to mitigate runoff, soil erosion, sediment losses, and improve food security in semiarid areas.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference139 articles.

1. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: laboratory soil flume experiments under simulated rainfall;Abrantes;Soil and Tillage Research,2018

2. Soil water storage, yield, water productivity, and transpiration efficiency of soybeans (Glyxine max L.Merr ) as affected by soil surface management in Ile-Ife, Nigeria;Adeboye;International Soil and Water Conservation Research,2017

3. On-farm verification of the soil moisture and yield response of tied ridge on maize production in dry areas of SNNPR, Ethiopia;Ademe;Journal of Environment and Earth Science,2018

4. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia;Adimassu;Land Degradation and Development,2014

5. The effect of water harvesting techniques on runoff, sedimentation, and soil properties;Al-Seekh;Environmental Management,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3