Ensemble learning for detecting gene-gene interactions in colorectal cancer

Author:

Dorani Faramarz1,Hu Ting1,Woods Michael O.2ORCID,Zhai Guangju2

Affiliation:

1. Department of Computer Science, Memorial University, St. John’s, Newfoundland and Labrador, Canada

2. Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada

Abstract

Colorectal cancer (CRC) has a high incident rate in both men and women and is affecting millions of people every year. Genome-wide association studies (GWAS) on CRC have successfully revealed common single-nucleotide polymorphisms (SNPs) associated with CRC risk. However, they can only explain a very limited fraction of the disease heritability. One reason may be the common uni-variable analyses in GWAS where genetic variants are examined one at a time. Given the complexity of cancers, the non-additive interaction effects among multiple genetic variants have a potential of explaining the missing heritability. In this study, we employed two powerful ensemble learning algorithms, random forests and gradient boosting machine (GBM), to search for SNPs that contribute to the disease risk through non-additive gene-gene interactions. We were able to find 44 possible susceptibility SNPs that were ranked most significant by both algorithms. Out of those 44 SNPs, 29 are in coding regions. The 29 genes include ARRDC5, DCC, ALK, and ITGA1, which have been found previously associated with CRC, and E2F3 and NID2, which are potentially related to CRC since they have known associations with other types of cancer. We performed pairwise and three-way interaction analysis on the 44 SNPs using information theoretical techniques and found 17 pairwise (p < 0.02) and 16 three-way (p ≤ 0.001) interactions among them. Moreover, functional enrichment analysis suggested 16 functional terms or biological pathways that may help us better understand the etiology of the disease.

Funder

Ignite Grant from the Research and Development Corporation of Newfoundland and Labrador

Natural Sciences and Engineering Research Council of Canada (NSERC)

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3