Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden

Author:

Strzałek Małgorzata1,Kufel Lech1

Affiliation:

1. Institute of Biological Sciences, Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland

Abstract

Duckweed species Lemna minor and Spirodela polyrhiza are clonal plants with vegetative organs reduced to a frond and a root in L. minor or a frond and several roots in S. polyrhiza. They reproduce vegetatively by relatively rapid multiplication of their fronds. The habit of S. polyrhiza (large fronds with up to 21 roots) makes it a strong competitor among representatives of the family Lemnaceae, probably due to different resource-use strategies compared to small duckweed. In our study, light was the resource that affected the plants before and during the laboratory experiment. We sampled the plants from natural habitats differing in light conditions (open and shady) and grew them for 16 days in a thermostatic growth room at 22 °C under a 16:8 photoperiod and three light intensities (125, 236, 459 µmol photons m–2 s–1) to investigate the trade-off between frond enlargement and multiplication. Both species from the open habitat had higher growth rates based on the frond numbers and on surface area of fronds compared to plants from the shady habitat. They adopted different species-specific strategies in response to the experimental light conditions. The species size affected the growth rates in L. minor and S. polyrhiza. Spirodela polyrhiza grew slower than L. minor, but both species grew fastest at medium light intensity (236 µmol m–2 s–1). Lemna minor maintained the growth rates at high light intensity, while S. polyrhiza slowed down. Spirodela polyrhiza responded to deteriorating light conditions by increasing its frond surface area, thus optimising light capture. Lemna minor from the shady habitat enhanced light harvest by increasing chlorophyll a concentration, but did not invest more in frond enlargement than L. minor from the open habitat. Under shady conditions, S. polyrhiza is likely to achieve an advantage over L. minor due to the larger frond size of the former. Our findings suggest the existence of a trade-off between size and number in duckweed.

Funder

The Ministry of Education and Science (Poland) through Siedlce University of Natural Sciences and Humanities

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3