Shining a light on duckweed: exploring the effects of artificial light at night (ALAN) on growth and pigmentation

Author:

Nakagawa-Lagisz Totoro12,Lagisz Malgorzata34

Affiliation:

1. Sydney Boys High School, Sydney, NSW, Australia

2. Onna Junior High School, Onna, Okinawa, Japan

3. Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia

4. Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan

Abstract

Background Artificial light at night (ALAN) is a novel environmental stressor of global concern. Various sources of artificial light are now common in urbanized areas and have diverse negative effects on many species of animals and plants. However, ALAN has also been shown to have no effect or a positive effect on some organisms. This study investigates the impact of ALAN on the growth and leaf pigmentation of a common floating freshwater plant species. Methods We exposed wild-derived dotted duckweed (Landoltia punctata) to either darkness during the night (Control group) or to artificial light at night (ALAN group) for 49 days. We set up two large boxes of eighty samples each with 2–3 leaves of duckweed in each sample at the start of the experiment. The ALAN box had an opaque lid with a small lamp that was turned on at night. The Control box was also covered at night with an opaque lid but without a lamp. During the day, plants in both boxes were exposed to natural light. We counted the number of leaves in each sample weekly. We took photos of the samples on day 28 to measure the total leaf surface area per sample. On day 49, we took photos of the underside of the leaves for analyses of the relative levels of dark pigmentation across all samples. Results We found that ALAN-exposed plant samples had, on average, more leaves than control plants after a few weeks of exposure. They also had a more variable number of leaves per sample. The total leaf area per sample on day 28 was larger in the ALAN samples. The underside of the leaves on day 49 was, on average, darker in the ALAN plants than in the control plants. Conclusion There is a significant growth-enhancing effect from exposure to artificial light at night on Landolita punctata. However, higher variability induced by ALAN exposure indicates that ALAN is also a stressful condition for these plants. This is in line with our finding of the presence of larger amounts of dark pigments in the leaves of ALAN-exposed plants. Dark pigmentation in duckweed species could be a defence mechanism protecting tissues from stress-induced oxidative damage. Overall, both positive and negative effects of ALAN can be observed simultaneously in different traits of the same organism. Increased individual variation can facilitate population-level adaptation to stressful conditions. As such, this work contributes to our knowledge of the effects of light pollution in urban environments on common plants.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference44 articles.

1. Anthocyanins in photoprotection: knowing the actors in play to solve this complex ecophysiological issue;Agati;The New Phytologist,2021

2. Duckweeds: their utilization, metabolites and cultivation;Baek;Applied Biological Chemistry,2021

3. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

4. Ecological effects of artificial light at night on wild plants;Bennie;Journal of Ecology,2016

5. ggbeeswarm: Categorical Scatter (Violin Point) Plots;Clarke,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3