Distribution, ecological risk assessment and source identification of pollutants in soils of different land-use types in degraded wetlands

Author:

Han Yangyang123,Wang Hongjie123,Zhang Guangming4,Zhang Shengqi123,Liu Xingchun123,Liu Ling123

Affiliation:

1. School of Eco-Environment, Hebei University, Baoding, China

2. Institute of Life Science and Green Development, Hebei University, Baoding, China

3. Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding, China

4. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China

Abstract

Background Urbanization and global warming are generating ecological degradation and land pattern alteration problems in natural wetlands. These changes are greatly affecting the ecological services of wetlands. Therefore, there is an urgent need to explore the relationship between pollutants and land-use type for wetland restoration purposes. Zaozhadian Lake is a freshwater wetland in the North China Plain, which is facing degradation and land-use types changes. An experiment for analyzing soil pollutants was conducted in three land-use types of farmland, lake, and ditch in the Zaozhadian Lake. The aims of this study were to identify the distribution, pollution degree, and sources of pollutants in different land-use types, and to explore the influence of land-use type changes on contamination. Methods In this study, surface sediments (0–10 cm) of three land types (farmland, lake, and ditch) in Zaozhadian Lake were collected, and heavy metals (Cu, Ni, Zn, Pb, Cd, Cr, Hg), As, total nitrogen (TN), total phosphorus (TP) and organic matter (OM) were determined. Kriging interpolation was used to visualize the pollutants distribution. The pollution degree of TN and TP was evaluated by the Nemerow pollution index. The pollution of heavy metals and As was evaluated by the geological accumulation index (Igeo) and the potential ecological risk index (RI). Then, dual hierarchical clustering analysis and the principal component analysis were performed to further analyze the impact of land type changes on pollutants. Results The heavy metal contents in the farmland were higher than other areas, while the TN (3.71 ± 1.03 g kg-1) and OM (57.17 ± 15.16 g kg−1) in lake sediments were higher than that in other regions. Farmland, lake, and ditches had low ecological risks, with RI values of 84.21, 71.34, and 50.78, respectively. The primary heavy metal pollutants are Pb, Cu, and Ni. Furthermore, Cu, As, Ni, Pb, and Zn were primarily derived from agriculture pollution, the source of Cd was the industrial pollution, and Cr mainly originated from natural sources. Nutrients primarily came from the decomposition of aquatic animals, plants, and human-related activities. When the lake area was converted into farmland, the heavy metal concentrations in the soils increased and the TN and OM decreased. Based on the results, this study put forward key strategies including the adjustment of the land-use type and restriction of the entry of pollutants into the wetland ecosystems in the Zaozhadian Lake. More attention should be paid to the impact of land-use type change on pollutants in wetlands.

Funder

Major Science Technology Program for Water Pollution Control and Treatment of China

National Natural Science Foundation of China

Advanced Talents Incubation Program of Hebei University

Innovation funding project for Postgraduates of Hebei University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3