Transcriptome analysis reveals gene expression differences in Liriomyza trifolii exposed to combined heat and abamectin exposure

Author:

Wang Yu-Cheng1,Chang Ya-Wen1,Du Yu-Zhou12

Affiliation:

1. Yangzhou University, College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou, China

2. Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China

Abstract

Liriomyza trifolii is an invasive pest of horticultural and vegetable crops that possesses robust competitive advantages that enable it to replace closely-related species. High temperatures often occur concomitantly with insecticide usage during L. trifolii outbreaks. In this study, we compared the transcriptomes of L. trifolii exposed to high temperature (40 °C T40), insecticide (LC50 of technical grade abamectin, I50) and combined high temperature and abamectin exposure (IT5040, I50 followed by T40; and TI4050, T40 followed by I50). RNA-seq generated and revealed 44,633 unigenes with annotation data; these were compared with COG and KEGG databases for functional classification and enrichment analysis. Compared with the I50 treatment, COG classification indicated that ‘post-translational modification, protein turnover, chaperones’ was enriched in the IT5040 treatment. In the TI4050 treatment, ‘carbohydrate transport and metabolism’ was the most abundant group. The most enriched KEGG pathways in the TI4050 and IT5040 treatments were ‘longevity regulating pathway - multiple species’ and ‘protein processing in endoplasmic reticulum’, respectively. Subsequent annotation and enrichment analyses indicated that stress-related genes such as CYP450s and HSPs were differentially expressed in the I50 vs. TI4050 or I50 vs. IT5040 treatment groups. Three commercial insecticide formulations were also used to further verify the expression of selected differentially-expressed genes. This study will be conductive to consider the temperature effect on insecticide tolerance in L. trifolii, and provides a framework for improving the application efficiency of insecticides in hot weather, which will ultimately reduce the overuse of pesticides.

Funder

Jiangsu Agricultural Industry Technology System

Jiangsu Science & Technology Support Program

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3