Effects of temperature on metabolic scaling in black carp

Author:

Li QianORCID,Zhu Xiaoling,Xiong Wei,Zhu YanqiuORCID,Zhang JianghuiORCID,Djiba Pathe Karim,Lv Xiao,Luo YipingORCID

Abstract

The surface area (SA) of organs and cells may vary with temperature, which changes the SA exchange limitation on metabolic flows as well as the influence of temperature on metabolic scaling. The effect of SA change can intensify (when the effect is the same as that of temperature) or compensate for (when the effect is the opposite of that of temperature) the negative effects of temperature on metabolic scaling, which can result in multiple patterns of metabolic scaling with temperature among species. The present study aimed to examine whether metabolic scaling in black carp changes with temperature and to identify the link between metabolic scaling and SA at the organ and cellular levels at different temperatures. The resting metabolic rate (RMR), gill surface area (GSA) and red blood cell (RBC) size of black carp with different body masses were measured at 10 °C and 25 °C, and the scaling exponents of these parameters were compared. The results showed that both body mass and temperature independently affected the RMR, GSA and RBC size of black carp. A consistent scaling exponent of RMR (0.764, 95% CI [0.718–0.809]) was obtained for both temperatures. The RMR at 25 °C was 2.7 times higher than that at 10 °C. At both temperatures, the GSA scaled consistently with body mass by an exponent of 0.802 (95% CI [0.759–0.846]), while RBC size scaled consistently with body mass by an exponent of 0.042 (95% CI [0.010–0.075]). The constant GSA scaling can explain the constant metabolic scaling as temperature increases, as metabolism may be constrained by fluxes across surfaces. The GSA at 10 °C was 1.2 times higher than that at 25 °C, which suggests that the constraints of GSA on the metabolism of black carp is induced by the higher temperature. The RBC size at 10 °C was 1.1 times higher than that at 25 °C. The smaller RBC size (a larger surface-to-volume ratio) at higher temperature suggests an enhanced oxygen supply and a reduced surface boundary limit on bR, which offset the negative effect of temperature on bR.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference74 articles.

1. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms;Audzijonyte;Global Ecology and Biogeography,2019

2. Effect of activity level on apparent heat increment in Atlantic cod, Gadus morhua;Blaikie;Canadian Journal of Fisheries and Aquatic Sciences,1996

3. Toward a metabolic theory of ecology;Brown;Ecology,2004

4. Effect of temperature on critical oxygen tension (Pcrit) and gill morphology in six cyprinids in the Yangtze River;Chen;China Aquaculture,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3