Long-term studies reveal major environmental factors driving zooplankton dynamics and periodicities in the Black Sea coastal zooplankton

Author:

Vereshchaka Alexander L.,Anokhina Liudmila L.,Lukasheva Taisiya A.,Lunina Anastasiia A.

Abstract

Background The development and management of shelf-sea ecosystems require a holistic understanding of the factors that influence the zooplankton structure and ecosystem functions. The Black Sea is an example of such areas influenced by eutrophication, overfishing, climate variability, invasions of the ctenophores Mnemiopsis leidyi followed by Beroe ovata. Thus, there is a set of principal factors which may influence and explain periodicities in the Black Sea ecosystem. Methods We analysed a total of 918 samples taken from 1991 to 2017 with intervals of 10 days. Taxa were identified to species, their abundance and biomass were calculated. We tested 12 environmental factors, which may explain zooplankton distribution: temperature, productivity-linked factors (surface chlorophyll as a proxi), wind, turbidity, lowest winter temperature, and concentration of the ctenophore M. leidyi. We used canonical correspondence analyses to find the dominant environmental factors and further regression analyses to retrieve dependences of plankton biomass on the major factors. Periodicities were assessed with the use of the Continuous wavelet transform and tested with use of One-way ANOSIM and PERMANOVA. The distances between ecosystem states in different years were assessed using non-metric multidimensional scaling. Results Currently, temperature and productivity are the major environmental factors driving zooplankton dynamics. Not long ago, before 1999, abundance of M. leidyi was one of the major factors explaining the zooplankton variance. Spectral analysis of species abundances revealed a 4-year transitional period in 1999–2002 (not reported before) when ecosystem adapted to a new invader B. ovata. Statistically robust 2- and 3-year periodicities were retrieved for most plankton taxa and some benthic larvae. We found robust correlations between temperature and surface chlorophyll concentration on one side and plankton abundances and biomass on the other, and retrieved multivariate regressions, which may have a prognostic value.

Funder

FASO Russia

RSF

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference51 articles.

1. Impact of climate variations on zooplankton community in the NE Black Sea;Arashkevich,2008

2. Overfishing drives a trophic cascade in the Black Sea;Daskalov;Marine Ecology Progress Series,2002

3. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts;Daskalov;Proceedings of the National Academy of Sciences of the United States of America,2007

4. Population dynamics, ingestion, growth and reproduction rates of the invader Beroe ovata and its impact on plankton community in Sevastopol Bay, the Black Sea;Finenko;Journal of Plankton Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3