Integration of full-length Iso-Seq, Illumina RNA-Seq, and flavor testing reveals potential differences in ripened fruits between two Passiflora edulis cultivars

Author:

Teng Yao12,Wang Ye12,Zhang Sunjian2,Zhang Xiaoying1,Li Jiayu1,Wu Fengchan3,Chen Caixia1,Long Xiuqin1,Li Anding3

Affiliation:

1. Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China

2. Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China

3. Guizhou Academy of Sciences, Guizhou Institute of Biology, Guiyang, China

Abstract

Background Passion fruit (Passiflora edulis) is loved for its delicious flavor and nutritious juice. Although studies have delved into the cultivation and enhancement of passion fruit varieties, the underlying factors contributing to the fruit’s appealing aroma remain unclear. Methods This study analyzed the full-length transcriptomes of two passion fruit cultivars with different flavor profiles: “Tainong 1” (TN1), known for its superior fruit flavor, and “Guihan 1” (GH1), noted for its strong environmental resilience but lackluster taste. Utilizing PacBio Iso-Seq and Illumina RNA-Seq technologies, we discovered terpene synthase (TPS) genes implicated in fruit ripening that may help explain the flavor disparities. Results We generated 15,913 isoforms, with N50 lengths of 1,500 and 1,648 bp, and mean lengths of 1,319 and 1,463 bp for TN1 and GH1, respectively. Transcript and isoform lengths ranged from a maximum of 7,779 bp to a minimum of 200 and 209 bp. We identified 14,822 putative coding DNA sequences (CDSs) averaging 1,063 bp, classified 1,007 transcription factors (TFs) into 84 families. Additionally, differential expression analysis of ripening fruit from both cultivars revealed 314 upregulated and 43 downregulated unigenes in TN1 compared to GH1. The top 10 significantly enriched Gene Ontology (GO) terms for the differentially expressed genes (DEGs) indicated that TN1’s upregulated genes were primarily involved in nutrient transport, whereas GH1’s up-regulated genes were associated with resistance mechanisms. Meanwhile, 17 PeTPS genes were identified in P. edulis and 13 of them were TPS-b members. A comparative analysis when compared PeTPS with AtTPS highlighted an expansion of the PeTPS-b subfamily in P. edulis, suggesting a role in its fruit flavor profile. Conclusion Our findings explain that the formation of fruit flavor is attributed to the upregulation of essential genes in synthetic pathway, in particular the expansion of TPS-b subfamily involved in terpenoid synthesis. This finding will also provide a foundational genetic basis for understanding the nuanced flavor differences in this species.

Funder

National Natural Science Foundation of China

National Key R&D Plan

Guizhou Provincial Science and Technology Plan Project

Youth Fund Project of Guizhou Academy of Sciences

Youth Fund Project of Guizhou Botanical Garden

Science and Technology Project of Guizhou Botanical Garden

Guizhou Forestry Research Project

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3