Affiliation:
1. College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
2. National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, Guangdong, China
3. Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
Abstract
The aim of this experiment was to investigate the effects of exogenous sprays of 5-aminolevulinic acid (5-ALA) and 2-Diethylaminoethyl hexanoate (DTA-6) on the growth and salt tolerance of rice (Oryza sativa L.) seedlings. This study was conducted in a solar greenhouse at Guangdong Ocean University, where ‘Huanghuazhan’ was selected as the test material, and 40 mg/L 5-ALA and 30 mg/L DTA-6 were applied as foliar sprays at the three-leaf-one-heart stage of rice, followed by treatment with 0.3% NaCl (W/W) 24 h later. A total of six treatments were set up as follows: (1) CK: control, (2) A: 40 mg⋅ L−1 5-ALA, (3) D: 30 mg⋅ L−1 DTA-6, (4) S: 0.3% NaCl, (5) AS: 40 mg⋅ L−1 5-ALA + 0.3% NaCl, and (6) DS: 30 mg⋅ L−1 DTA-6+0.3% NaCl. Samples were taken at 1, 4, 7, 10, and 13 d after NaCl treatment to determine the morphology and physiological and biochemical indices of rice roots. The results showed that NaCl stress significantly inhibited rice growth; disrupted the antioxidant system; increased the rates of malondialdehyde, hydrogen peroxide, and superoxide anion production; and affected the content of related hormones. Malondialdehyde content, hydrogen peroxide content, and superoxide anion production rate significantly increased from 12.57% to 21.82%, 18.12% to 63.10%, and 7.17% to 56.20%, respectively, in the S treatment group compared to the CK group. Under salt stress, foliar sprays of both 5-ALA and DTA-6 increased antioxidant enzyme activities and osmoregulatory substance content; expanded non-enzymatic antioxidant AsA and GSH content; reduced reactive oxygen species (ROS) accumulation; lowered malondialdehyde content; increased endogenous hormones GA3, JA, IAA, SA, and ZR content; and lowered ABA content in the rice root system. The MDA, H2O2, and O2− contents were reduced from 35.64% to 56.92%, 22.30% to 53.47%, and 7.06% to 20.01%, respectively, in the AS treatment group compared with the S treatment group. In the DS treatment group, the MDA, H2O2, and O2− contents were reduced from 24.60% to 51.09%, 12.14% to 59.05%, and 12.70% to 45.20%. In summary, NaCl stress exerted an inhibitory effect on the rice root system, both foliar sprays of 5-ALA and DTA-6 alleviated damage from NaCl stress on the rice root system, and the effect of 5-ALA was better than that of DTA-6.
Funder
Scientific Research Start-up funds of Guangdong Ocean University
Innovation Team Project of ordinary colleges of the Educational Commission of Guangdong Province
Research start-up project of Guangdong Ocean University