Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars

Author:

Çelik Sadettin1

Affiliation:

1. Genç Vocational School, Forestry Department, Bingol University, Bingol, Turkey

Abstract

The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3