Expression profile analysis of cotton fiber secondary cell wall thickening stage

Author:

Liu Li1,Grover Corrinne E.2ORCID,Kong Xianhui1,Jareczek Josef2,Wang Xuwen1,Si Aijun1,Wang Juan1,Yu Yu1,Chen Zhiwen3ORCID

Affiliation:

1. Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China

2. Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA

3. Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China

Abstract

To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17–24, with long fibers labeled as L, and 62–33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17–24 (L) and 62–33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17–24 (L) and 62–33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3