Abstract
Abstract
Background
Cotton (Gossypium spp.) is the most important world-wide fiber crop but salt stress limits cotton production in coastal and other areas. Growth regulation factors (GRFs) play regulatory roles in response to salt stress, but their roles have not been studied in cotton under salt stress.
Results
We identified 19 GRF genes in G. raimondii, 18 in G. arboreum, 34 in G. hirsutum and 45 in G. barbadense, respectively. These GRF genes were phylogenetically analyzed leading to the recognition of seven GRF clades. GRF genes from diploid cottons (G. raimondii and G. arboreum) were largely retained in allopolyploid cotton, with subsequent gene expansion in G. barbadense relative to G. hirsutum. Most G. hirsutum GRF (GhGRF) genes are preferentially expressed in young and growing tissues. To explore their possible role in salt stress, we used qRT-PCR to study expression responses to NaCl treatment, showing that five GhGRF genes were down-regulated in leaves. RNA-seq experiments showed that seven GhGRF genes exhibited decreased expression in leaves under NaCl treatment, three of which (GhGRF3, GhGRF4, and GhGRF16) were identified by both RNA-seq and qRT-PCR. We also identified six and three GRF genes that exhibit decreased expression under salt stress in G. arboreum and G. barbadense, respectively. Consistent with its lack of leaf withering or yellowing under the salt treatment conditions, G. arboreum had better salt tolerance than G. hirsutum and G. barbadense. Our results suggest that GRF genes are involved in salt stress responses in Gossypium.
Conclusion
In summary, we identified candidate GRF genes that were involved in salt stress responses in cotton.
Funder
National Natural Science Foundation of China
Postdoctoral Research Foundation of China
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Wendel FJ, Grover C. Taxonomy and evolution of the cotton genus, Gossypium. 2nd ed. Madison: American Society of Agronomy Inc., Crop Science Society of America Inc., and Soil Science Society of America Inc; 2015.
2. Wang K, Wendel JF, Hua J. Designations for individual genomes and chromosomes in Gossypium. J Cotton Res. 2018;1(1):3.
3. Tian X, Ruan JX, Huang JQ, Yang CQ, Fang X, Chen ZW, Hong H, Wang LJ, Mao YB, Lu S, et al. Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci U S A. 2018;115(23):E5410–8.
4. van Kretschmar B, Cabrera AR, Bradley JR, Roe RM. Novel adult feeding disruption test (FDT) to detect insecticide resistance of lepidopteran pests in cotton. Pest Manag Sci. 2013;69(5):652–60.
5. Chen D, Chen F, Chen C, Chen X, Mao Y. Transcriptome analysis of three cotton pests reveals features of gene expressions in the mesophyll feeder Apolygus lucorum. Sci China Life Sci. 2017;60(8):826–38.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献