Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images

Author:

Morais Mauro César Cafundó123,Silva Diogo3,Milagre Matheus Marques4,Oliveira Maykon Tavares de5,Pereira Thaís6,Silva João Santana5,Costa Luciano da F.7,Minoprio Paola2,Junior Roberto Marcondes Cesar8,Gazzinelli Ricardo6,de Lana Marta49,Nakaya Helder I.12310

Affiliation:

1. Hospital Israelita Albert Einstein, São Paulo, Brazil

2. Scientific Platform Pasteur-University of São Paulo (SPPU), Universidade de São Paulo, Sao Paulo, SP, Brazil

3. Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, Universidade de São Paulo, Sao Paulo, SP, Brazil

4. Departamento de Análises Clínicas (DEACL), Programa de Pós-graduação em Ciências Farmacêuticas (CiPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

5. Fiocruz- Bi-Institutional Translational Medicine Project, FIOCRUZ/SP, Ribeirão Preto, SP, Brazil

6. Laboratório de Imunopatologia, Instituto René Rachou, Fundação Oswaldo Cruz, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

7. São Carlos Institute of Physics (DFCM- IFSC), Universidade de São Paulo, São Carlos, SP, Brazil

8. Instituto de Matemática e Estatística (IME), Universidade de São Paulo, São Paulo, SP, Brazil

9. Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

10. Center of Research in Inflammatory Diseases (CRID), Universidade de São Paulo, Ribeirão Preto, SP, Brazil

Abstract

Chagas disease is a life-threatening illness caused by the parasite Trypanosoma cruzi. The diagnosis of the acute form of the disease is performed by trained microscopists who detect parasites in blood smear samples. Since this method requires a dedicated high-resolution camera system attached to the microscope, the diagnostic method is more expensive and often prohibitive for low-income settings. Here, we present a machine learning approach based on a random forest (RF) algorithm for the detection and counting of T. cruzi trypomastigotes in mobile phone images. We analyzed micrographs of blood smear samples that were acquired using a mobile device camera capable of capturing images in a resolution of 12 megapixels. We extracted a set of features that describe morphometric parameters (geometry and curvature), as well as color, and texture measurements of 1,314 parasites. The features were divided into train and test sets (4:1) and classified using the RF algorithm. The values of precision, sensitivity, and area under the receiver operating characteristic (ROC) curve of the proposed method were 87.6%, 90.5%, and 0.942, respectively. Automating image analysis acquired with a mobile device is a viable alternative for reducing costs and gaining efficiency in the use of the optical microscope.

Funder

São Paulo Research Foundation

National Council for Research

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3