Trajectory-driven computational analysis for element characterization in Trypanosoma cruzi video microscopy

Author:

Martins Geovani L.ORCID,Ferreira Daniel S.ORCID,Carneiro Claudia M.,Nogueira-Paiva Nivia C.,Bianchi Andrea G. C.

Abstract

Optical microscopy videos enable experts to analyze the motion of several biological elements. Particularly in blood samples infected with Trypanosoma cruzi (T. cruzi), microscopy videos reveal a dynamic scenario where the parasites’ motions are conspicuous. While parasites have self-motion, cells are inert and may assume some displacement under dynamic events, such as fluids and microscope focus adjustments. This paper analyzes the trajectory of T. cruzi and blood cells to discriminate between these elements by identifying the following motion patterns: collateral, fluctuating, and pan–tilt–zoom (PTZ). We consider two approaches: i) classification experiments for discrimination between parasites and cells; and ii) clustering experiments to identify the cell motion. We propose the trajectory step dispersion (TSD) descriptor based on standard deviation to characterize these elements, outperforming state-of-the-art descriptors. Our results confirm motion is valuable in discriminating T. cruzi of the cells. Since the parasites perform the collateral motion, their trajectory steps tend to randomness. The cells may assume fluctuating motion following a homogeneous and directional path or PTZ motion with trajectory steps in a restricted area. Thus, our findings may contribute to developing new computational tools focused on trajectory analysis, which can advance the study and medical diagnosis of Chagas disease.

Funder

Foundation for Research Support of the State of Minas Gerais

National Council of Scientific and Technological Development

Dean of Research, Graduate Studies and Innovation

Coordination for the Improvement of Higher Education Personnel

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3