UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution

Author:

Meng Yanhua123,Zhong Wanqiang4,Liu Cunjia2,Su Jinya5,Su Jiyuan6,Lan Yubin4,Wang Zhiguo3,Wang Meimei1

Affiliation:

1. School of Mechanical Engineering, Anyang Institute of Technology, Anyang, Henan Province, China

2. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom

3. Key Laboratory of Aviation Plant Protection, Ministry of Agriculture and Rural Affairs, Anyang, China

4. College of Electronic Engineering, South China Agricultural University, Guangzhou, Guangdong Province, China

5. School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom

6. Guilin Jiqi Biochemical Company, Guilin, Guangxi Zhuang Autonomous Region, China

Abstract

Adding tank-mix adjuvants into the spray mixture is a common practice to improve droplet distribution for field crops (e.g., rice, wheat, corn, etc.) when using Unmanned Aerial Vehicle (UAV) sprayers. However, the effectiveness of tank-mix adjuvant for UAV spraying in orchard crops is still an open problem, considering their special canopy structure and leaf features. This study aims to evaluate the effects of a typical tank-mix adjuvant concentrations (i.e., Nong Jian Fei (NJF)) on Contact Angle (CA) and droplet distribution in the citrus tree canopy. Three commonly used parameters, namely dynamic CA, droplet coverage, and Volume Median Diameter (VMD), are adopted for performance evaluation. The dynamic CAs on the adaxial surface of citrus leaves, for water-only and NJF-presence sprays, respectively, are measured with five concentration levels, where three replications are performed for each concentration. The sprays with 0.5‰ NJF are adopted in the field experiment for evaluating droplet distributions, where Water Sensitive Papers (WSPs) are used as collectors. Two multi-rotor UAVs (DJI T20 and T30) which consist of different sizes of pesticide tanks and rotor diameters are used as the spraying platforms. Both water-only and NJF-presence treatments are conducted for the two UAVs, respectively. The results of the CA experiment show that NJF addition can significantly reduce the CAs of the sprays. The sprays with 0.5‰ NJF obtain the lowest CA within the observing time, suggesting a better spread ability on solid surface (e.g., WSPs or/and leaves). With respect to the effects of NJF addition on individual UAVs, the field trial results indicate that NJF addition can remarkably increase both the droplet coverage and VMD at three canopy layers, except for T30 droplet coverage of the inside and bottom layers. Comparing the difference of droplet coverage between two UAVs, while significant difference is found in the same layer before NJF addition, there is no notable difference appearing in the outside and bottom layers after NJF addition. The difference of VMD in the same layer between two UAVs is not affected by NJF addition except for the bottom layer. These results imply that the differences of droplet coverage among different UAVs might be mitigated, thus the droplet distribution of some UAVs could be improved by adding a tank-mix adjuvant into the sprays. This hypothesis is verified by investigating the droplet penetration and the correlation coefficient (CC) of droplet coverage and VMD. After NJF addition, the total percentage of T20 droplet coverage in the bottom and inside layers is increased by 5%. For both UAVs, the CCs indicate that both droplet coverage and VMD increase at the same time in most cases after NJF addition. In conclusion, the addition of a tank-mix adjuvant with the ability to reduce CA of the sprays, can effectively improve droplet distribution using UAV spraying in the citrus canopy by increasing droplet coverage and VMD.

Funder

Anyang Science and Technology Project

Henan Science and Technology Project

UK Science and Technology Facilities Council

Royal Society funding

Talent Introduction Project of High-end Foreign Experts in Henan Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3