Shared mycorrhizae but distinct communities of other root-associated microbes on co-occurring native and invasive maples

Author:

DeBellis Tonia12,Kembel Steven W.3,Lessard Jean-Philippe1

Affiliation:

1. Department of Biology, Concordia University, Montreal, Quebec, Canada

2. Department of Biology, Dawson College, Montreal, Quebec, Canada

3. Département des sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada

Abstract

Background Biological invasions are major drivers of environmental change that can significantly alter ecosystem function and diversity. In plants, soil microbes play an important role in plant establishment and growth; however, relatively little is known about the role they might play in biological invasions. A first step to assess whether root microbes may be playing a role in the invasion process is to find out if invasive plants host different microbes than neighbouring native plant species. Methods In this study we investigated differences in root associated microbes of native sugar maple (Acer saccharum Marsh.) and exotic Norway maple (A. platanoides L.) collected from a forested reserve in eastern Canada. We used microscopy to examine root fungi and high-throughput sequencing to characterize the bacterial, fungal and arbuscular mycorrhizal communities of both maple species over one growing season. Results We found differences in root associated bacterial and fungal communities between host species. Norway maple had a higher bacterial and fungal OTU (operational taxonomic units) richness compared to sugar maple, and the indicator species analysis revealed that nine fungal OTUs and three bacterial OTUs had a significant preference for sugar maple. The dominant bacterial phyla found on the roots of both maple species were Actinobacteria and Proteobacteria. The most common fungal orders associated with the Norway maple roots (in descending order) were Helotiales, Agaricales, Pleosporales, Hypocreales, Trechisporales while the Agaricales, Pleosporales, Helotiales, Capnodiales and Hypocreales were the dominant orders present in the sugar maple roots. Dark septate fungi colonization levels were higher in the sugar maple, but no differences in arbuscular mycorrhizal fungal communities and colonization rates were detected between maple species. Discussion Our findings show that two congeneric plant species grown in close proximity can harbor distinct root microbial communities. These findings provide further support for the importance of plant species in structuring root associated microbe communities. The high colonization levels observed in Norway maple demonstrates its compatibility with arbuscular mycorrhizal fungi in the introduced range. Plant-associated microbial communities can affect host fitness and function in many ways; therefore, the observed differences suggest a possibility that biotic interactions can influence the dynamics between native and invasive species.

Funder

Fonds de Recherche du Québec—Nature et Technologies (FRQNT)

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3