Shoot and root traits of summer maize hybrid varieties with higher grain yields and higher nitrogen use efficiency at low nitrogen application rates

Author:

Su Wennan12,Kamran Muhammad2,Xie Jun2,Meng Xiangping12,Han Qingfang12,Liu Tiening12,Han Juan12

Affiliation:

1. Key Laboratory of Crop Physio-ecology and Tillage Science in North-western Loess Plateau, Ministry of Agriculture / College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China

2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-arid Areas, Ministry of Education / Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, China

Abstract

Breeding high-yielding and nitrogen-efficient maize (Zea mays L.) hybrid varieties is a strategy that could simultaneously solve the problems of resource shortages and environmental pollution. We conducted a 2-year field study using four nitrogen application rates (0, 150, 225, and 300 kg N hm−2) and two maize hybrid varieties (ZD958 and QS101) to understand the plant traits related to high grain yields and high nitrogen use efficiency (NUE). We found that ZD958 had a higher grain yield and nitrogen accumulation in the shoots at harvest as well as a higher NUE at lower nitrogen application rates (0 and 150 kg hm–2) than QS101. The grain yields and NUE were almost identical for the two hybrid varieties at nitrogen application rates of 225 and 300 kg N hm–2. Compared with QS101, ZD958 had higher above-ground and below-ground biomass amounts, a deeper root distribution, longer root length, root active absorption area, greater grain filling rate, and higher photosynthetic NUE than QS101 at lower nitrogen application rates. Our results showed that ZD958 can maintain a higher grain yield at lower nitrogen rates in a similar manner to N-efficient maize hybrid varieties. The selection of hybrids such as ZD958 with a deeper root distribution and higher photosynthetic NUE can increase the grain yield and NUE under low nitrogen conditions.

Funder

National High-Tech Research and Development Programs of China

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3