Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.)

Author:

Noor Hafeez1ORCID,Yan Zhouzuo1,Sun Peijie1,Zhang Limin1,Ding Pengcheng1,Li Linghong1,Ren Aixia1,Sun Min1,Gao Zhiqiang1

Affiliation:

1. College of Agriculture, Shanxi Agriculture University, Jinzhong 030801, China

Abstract

This study aims to understand the influence of chlorophyll fluorescence parameters on the yield of winter wheat in some areas of China. Nitrogen (N) application is believed to improve photosynthesis in flag leaf, which ultimately increases the final yield. The experiment was conducted in the wheat experimental base of Shanxi Agricultural University in Taigu, Shanxi Province, China; before sowing, four N application rates were set—N0, N120, N150, and N210 kg ha–1 of the Yunhan-20410 variety from 2019 to 2022. The results from different parameters of research showed that the organic manure partial substitution for chemical fertilizer increased post-anthesis N uptake by 16.4 and 81.4%, thus increasing the post-anthesis photosynthetic capacity and delaying leaf senescence. N150 treatment can improve dry matter (DM) accumulation, thus promoting the increase of the yield. The maximum net photosynthesis PN value of the booting stage and flowering stage indicated that nitrogen application could significantly improve the photosynthetic rate of wheat leaves, among which medium nitrogen treatment had the most significant promoting effect. The single-photon avalanche diode (SPAD) value of the leaf of wheat in each treatment increased rapidly in a small range from the jointing stage to the booting stage, respectively. The grain yield under N fertilizer partial substitution for N fertilizer treatment increased by 23%. According to the different significance test, the effects of nitrogen application rate on net photosynthesis PN of winter wheat were extremely significant at all growth stages, indicating that changing the population distribution mode and nitrogen level could effectively improve leaf photosynthetic performance and that N150 level was the best.

Funder

China Agriculture Research System

National Natural Science Foundation of China

technology innovation team of Shanxi Province

Key Laboratory of Shanxi Province

“1331” Engineering Key Laboratory of Shanxi Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3