Mechanism of endothelial nitric oxide synthase phosphorylation and activation by tentacle extract from the jellyfishCyanea capillata

Author:

Wang Beilei12,Liu Dan2,Wang Chao2,Wang Qianqian12,Zhang Hui2,Liu Guoyan12,Tao Xia3,Zhang Liming12

Affiliation:

1. Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai, China

2. Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China

3. Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China

Abstract

Our previous study demonstrated that tentacle extract (TE) from the jellyfishCyanea capillata(C. capillata) could cause a weak relaxation response mediated by nitric oxide (NO) using isolated aorta rings. However, the intracellular mechanisms of TE-induced vasodilation remain unclear. Thus, this study was conducted to examine the role of TE on Akt/eNOS/NO and Ca2+signaling pathways in human umbilical vein endothelial cells (HUVECs). Our results showed that TE induced dose- and time-dependent increases of eNOS activity and NO production. And TE also induced Akt and eNOS phosphorylation in HUVECs. However, treatment with specific PI3-kinase inhibitor (Wortmannin) significantly inhibited the increases in NO production and Akt/eNOS phosphorylation. In addition, TE also stimulated an increase in the intracellular Ca2+concentration ([Ca2+]i), which was significantly attenuated by either IP3receptor blocker (Heparin) or PKC inhibitor (PKC 412). In contrast, extracellular Ca2+-free, L-type calcium channel blocker (Nifedipine), or PKA inhibitor (H89) had no influence on the [Ca2+]ielevation. Since calcium ions also play a critical role in stimulating eNOS activity, we next explored the role of Ca2+in TE-induced Akt/eNOS activation. In consistent with the attenuation of [Ca2+]ielevation, we found that Akt/eNOS phosphorylation was also dramatically decreased by Heparin or PKC 412, but not affected by Nifedipine or H89. However, the phosphorylation level could also be decreased by the removal of extracellular calcium. Taken together, our findings indicated that TE-induced eNOS phosphorylation and activation were mainly through PI3K/Akt-dependent, PKC/IP3R-sensitive and Ca2+-dependent pathways.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

National Natural Science Foundation of China

Ministry of Science and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3