Feeding response of the tropical copepod Acartia erythraea to short-term thermal stress: more animal-derived food was consumed

Author:

Hu Simin1,Liu Sheng1,Wang Lingli12,Li Tao13,Huang Hui13

Affiliation:

1. Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, Hainan, China

Abstract

The objective of this study was to explore the feeding response of tropical copepods to short-term thermal shock and provide insight into the potential impact of coastal power plants on the trophic dynamics of tropical coastal ecosystems. Feeding experiments were conducted at three different temperatures (29 °C, 33 °C, and 35 °C) using the copepod Acartia erythraea, collected from Sanya Bay, China. The grazing rate of A. erythraea decreased dramatically in the high temperature treatment. Analysis of 18S rDNA clone libraries revealed that the diet of copepods from different treatments was mainly comprised of diatoms, metazoans, and protozoans; A. erythraea exhibited an obvious feeding preference shift with temperature, with a change from a diatom-dominated diet at 29 °C to a metazoan-dominated diet at 35 °C, and the omnivory index shifted from 0.1 to 2.84 correspondingly. Furthermore, A. erythraea showed a positive feeding response to plant food (i.e., phytoplankton and land plants) in the control treatment (29 °C), but a positive response to animal prey (i.e., metazoans and protozoans) at temperatures exceeding 33 °C, as evaluated by the Ivlev’s selectivity index. Our results suggest that copepods could regulate their food intake by considering their energy demands when exposed to short-term thermal stress, which might influence the pathway of materials moving up the trophic system. However, further studies are required to elucidate the effects of elevated temperature on feeding of different organisms in order to predict the influence of thermal pollution on the food web of tropical coastal ecosystems.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Key Research and Development Project of China

Science and Technology Planning Projects of Guangdong province, China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3