High-throughput sequencing reveals omnivorous and preferential diets of the rotifer Polyarthra in situ

Author:

Liang Diwen,Luo Hailin,Huang Chunrong,Ye Zhen,Sun Shuangshuang,Dong Jiahua,Liang Mingyi,Lin Senjie,Yang Yufeng

Abstract

Knowledge of in situ diet of widespread rotifers is crucial for accurately understanding the trophic position, ecological function, and adaptability to environmental changes in aquatic ecosystems. However, it is challenging to achieve the in situ diet information due to the lack of efficient and comprehensive methods. Here, we investigated the diet composition of Polyarthra in a subtropical lake using high-throughput sequencing (HTS) of a rRNA metabarcode for Polyarthra and ambient water samples. After eliminating Polyarthra sequences, a total of 159 operational taxonomic units (OTUs) from taxa in 15 phyla were detected from Polyarthra gut content samples. Most of the OTUs belong to Chlorophyta, followed by unclassified Fungi, Chrysophyta, Dinoflagellata, Ciliophora, Bacillariophyta, Cryptophyta, Arthropoda, Cercozoa, Mollusca, Apicomplexa, Haptophyta, Amoebozoa, Chordata and other eukaryotes. Our results showed that Polyarthra mainly grazed on Chlorophyta, which may result from the high relative abundance of Chlorophyta in ambient waters. In contrast, Chrysophyceae and Synurophyceae were enriched in Polyarthra’s gut, indicating that this rotifer prefers these taxa as food. Moreover, correlation analysis showed that total nitrogen, transparency, depth, Chlorophyll-a and total phosphorus were key factors for the variation of the eukaryotic community in the Polyarthra gut contents. When the concentration of nutrients in the water environment decreased, Polyarthra shifted from herbivorous feeding to more carnivorous feeding. Thus, Polyarthra is generally omnivorous but preference for Chrysophytes and Synurophytes, and it responds to the environmental changes by adopting a flexible feeding strategy. This could partly explain why the widespread rotifers have apparently wide tolerance toward spatial and environmental changes.

Funder

Guangzhou Municipal Science and Technology Project

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3