Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish

Author:

DeCourten Bethany M.12,Connon Richard E.3,Brander Susanne M.12

Affiliation:

1. Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America

2. Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America

3. Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA, United States of America

Abstract

Aquatic organisms inhabiting polluted waterways face numerous adverse effects, including physiological disruption by endocrine disrupting compounds (EDCs). Little is known about how the temperatures associated with global climate change may influence the response of organisms exposed to EDCs, and the effects that these combined stressors may have on molecular endpoints such as gene expression. We exposed Menidia beryllina (inland silversides) to environmentally relevant concentrations (1 ng/L) of two estrogenic EDCs (bifenthrin and 17α-ethinylestradiol; EE2) at 22 °C and 28 °C. We conducted this experiment over multiple generations to better understand the potential effects to chronically exposed populations in the wild. We exposed adult parental fish (F0) for 14 days prior to spawning of the next generation. F1 larvae were then exposed from fertilization until 21 days post hatch (dph) before being transferred to clean water tanks. F1 larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring (F2 generation). Gene expression was quantified by performing qPCR on F0 and F1 gonads, as well as F1 and F2 larvae. We did not detect any significant differences in the expression of genes measured in the parental or F1 adult gonads. We found that the 28 °C EE2 treatment significantly decreased the expression of nearly all genes measured in the F1 larvae. This pattern was transferred to the F2 generation for expression of the follicle-stimulating hormone receptor (FSHR) gene. Expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) and G protein-coupled receptor 30 (GPR30) revealed changes not measured in the previous generation. Effects of the bifenthrin treatments were not observed until the F2 generation, which were exposed to the chemicals indirectly as germ cells. Our results indicate that effects of EDCs and their interactions with abiotic factors, may not be adequately represented by singular generation testing. These findings will contribute to the determination of the risk of EDC contamination to organisms inhabiting contaminated waterways under changing temperature regimes.

Funder

California Department of Fish and Wildlife

US Environmental Protection Agency

Ahuja Water Quality Fellowship

Francis Peter Fensel Memorial Fellowship

2011 UNCW Center for Marine Science

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3