No detectable changes in reproductive behaviour of Caenorhabditis elegans males after 97 generations under obligatory outcrossing

Author:

Antoł WeronikaORCID,Byszko Jagoda,Dyba AlicjaORCID,Palka Joanna,Babik Wiesław,Prokop Zofia

Abstract

In Caenorhabditis elegans, a species reproducing mostly via self-fertilization, numerous signatures of selfing syndrome are observed, including differences in reproductive behaviour compared to related obligatory outcrossing species. In this study we investigated the effect of nearly 100 generations of obligatory outcrossing on several characteristics of male reproductive behaviour. A genetically uniform ancestral population carrying a mutation changing the reproductive system to obligatory outcrossing was split into four independent populations. We predicted that the transition from the natural reproductive system, where males were extremely rare, to obligatory outcrossing, where males comprise 50% of the population and are necessary for reproduction, will increase the selection pressure on higher effectiveness of mating behaviour. Several characteristics of male mating behaviour during a 15 min interaction as well as copulation success were compared between the ancestral and evolved populations. No significant differences in male mating behaviour or fertilization success were detected between generations 1 and 97 of obligatory outcrossing populations. We found, however, that longer contact with females increased chances of successful copulation, although this effect did not differ between populations. We conclude that either selection acting on male mating behaviour has not been strong enough, or mutational input of new adaptive variants has not been sufficient to cause noticeable behavioural differences after 97 generations of evolution starting from genetically uniform population.

Funder

National Science Centre

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3