Evolution of Reproductive Efficiency in Caenorhabditis elegans Under Obligatory Outcrossing

Author:

Antoł WeronikaORCID,Palka Joanna K.ORCID,Błażejowska Aleksandra,Sychta Karolina,Kosztyła PaulinaORCID,Labocha Marta K.ORCID,Prokop Zofia M.ORCID

Abstract

AbstractRadical shifts in reproductive systems result in radical changes in selective pressures acting on reproductive traits. Nematode Caenorhabditis elegans constitutes one of rare model systems where such shifts can be experimentally induced, providing an opportunity for studying the evolution of reproductive phenotypes in real time. Evolutionary history of predominantly selfing reproduction in has led to degeneration of traits involved outcrossing, making it inefficient. Here, we introduced obligatory outcrossing into isogenic lines of C. elegans and allowed replicate populations to evolve under the new reproductive system. We predicted that they should evolve higher outcrossing efficiency, leading to increased fitness relative to unevolved ancestors. To test this prediction, we assayed fitness of both ancestral and evolved outcrossing populations. To control for the potentially confounding effect of adaptation to laboratory conditions, we also assayed populations with wild-type (selfing) reproductive system. In five experimental blocks, we measured competitive fitness of 12 evolved populations (6 outcrossing, 6 selfing) after ca. 95 generations of evolution, along with their respective ancestors. On average, we found that fitness increased by 0.72 SD (± 0.3 CI) in outcrossing and by 0.52 (± 0.35 CI) in selfing populations, suggesting further adaptation to laboratory conditions in both types. Contrary to predictions, fitness increase was not significantly higher in outcrossing populations, suggesting no detectable adaptation to the changed reproductive system. Importantly, the results for individual populations varied strongly between experimental blocks, in some cases even differing in effect direction. This emphasises the importance of experimental replication in avoiding reporting false findings.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3