Different types of plantar vibration affect gait characteristics differently while walking on different inclines

Author:

Xie Haoyu1ORCID,Liang Haolan1,Chien Jung H.2ORCID

Affiliation:

1. Department of Health & Rehabilitation Science, University of Nebraska Medical Center, Omaha, NE, United States

2. Independent researcher, Omaha, NE, United States

Abstract

Background Plantar vibration has been widely used to strengthen the sensation of the somatosensory system, further enhancing balance during walking on a level surface in patients with stroke. However, previous studies with plantar vibration only involved the level surface, which neglected the importance of inclined/declined walking in daily life. Thus, combining the plantar vibration and inclined/declined walking might answer a critical research question: whether different types of plantar vibration had different effects on gait characteristics during walking on different inclines. Methods Eighteen healthy young adults were recruited. Fifteen walking conditions were assigned randomly to these healthy adults (no, sub-, and supra-threshold plantar vibration × five different inclines: +15%, +8%, 0%, −8%, −15% grade). A motion capture system with eight cameras captured 12 retro-reflective markers and measured the stride time, stride length, step width, and respective variabilities. Results A significant interaction between vibration and inclination was observed in the stride time (p < 0.0001) and step width (p = 0.015). Post hoc comparisons found that supra-threshold vibration significantly decreased the stride time (−8%: p < 0.001; −15%: p < 0.001) while the sub-threshold vibration significantly increased the step width (−8%: p = 0.036) in comparison with no plantar vibration. Conclusions When walking downhill, any perceivable (supra-threshold) vibration on the plantar area decreased the stride time. Also, the increase in step width was observed by non-perceivable (sub-threshold) plantar vibration while walking uphill. These observations were crucial as follows: (1) applying sub-threshold plantar vibrations during uphill walking could increase the base of support, and (2) for those who may need challenges in locomotor training, applying supra-threshold vibration during downhill walking could reach this specific training goal.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3