Comparative chloroplast genome analyses of diverse Phoebe (Lauraceae) species endemic to China provide insight into their phylogeographical origin

Author:

Shi Wenbo1,Song Weicai1,Chen Zimeng1,Cai Haohong1,Gong Qin1,Liu Jin2,Shi Chao13,Wang Shuo1

Affiliation:

1. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China

2. Yunnan Institute of Tropical Crops, Xishuangbanna, China

3. Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, China

Abstract

The genus Phoebe (Lauraceae) includes about 90 evergreen tree species that are an ideal source of timber. Habitat destruction and deforestation have resulted in most of them being endemic to China. The accurate identification of endangered Phoebe species in China is necessary for their conservation. Chloroplast genome sequences can play an important role in species identification. In this study, comparative chloroplast genome analyses were conducted on diverse Phoebe species that are primarily distributed in China. Despite the conserved nature of chloroplast genomes, we detected some highly divergent intergenic regions (petA–psbE, ndhF–rpl32, and psbM–trnD-GUC) as well as three highly divergent genes (rbcL, ycf1, and ycf2) that have potential applications in phylogenetics and evolutionary analysis. The phylogenetic analysis indicated that various Phoebe species in China were divided into three clades. The complete chloroplast genome was better suited for phylogenetic analysis of Phoebe species. In addition, based on the phylogeographical analysis of Phoebe species in China, we inferred that the Phoebe species in China first originated in Yunnan and then spread to other southern areas of the Yangtze River. The results of this research will add to existing case studies on the phylogenetic analysis of Phoebe species and have the potential to contribute to the conservation of Phoebe species that are in danger of extinction.

Funder

National Natural Science Foundation of China

Shandong Province Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3