Optimized MobileNetV3: a deep learning-based Parkinson’s disease classification using fused images

Author:

Pechetti Sukanya,Rao Battula Srinivasa

Abstract

Background and Objective Parkinson’s disease (PD) is a progressive neurological condition that manifests motor and non-motor symptoms. Early in the course of the disease, PD patients frequently experience vocal difficulties. In the beginning, preprocessing procedures were used with multi-focus image fusion to enhance the quality of input images. It is essential to diagnose and treat PD early to ensure that patients live healthy and productive lives. Methods Tremors, rigidity in the muscles, slow movement, difficulty balance, and other psychological symptoms are some of the disease’s symptoms. One of the critical mechanisms supporting PD identification and assessment is the dynamics of handwritten records. Several machine-learning techniques have been researched for the early detection of this disease. Yet the main problem with most of these manual feature extraction methods is their poor performance and accuracy. Results This cannot be acceptable when discovering such a chronic condition. For this purpose, a powerful deep learning model is suggested to help with the early diagnosis of Parkinson’s disease. Therefore, we proposed MobileNetV3-based classification. To enhance the classification performances even more, the MobileNetV3-based approach was optimized by the Improved Dwarf Mongoose Optimization algorithm (IDMO). Conclusion The Pyramid channel-based feature attention network (PCFAN) chooses the critical features. The efficiency of the approaches is tested using the PPMI and NTUA datasets. Our proposed approach obtains 99.34% accuracy, 98.53% sensitivity, 97.78% specificity, and 99.12% F-score compared to previous methods.

Publisher

PeerJ

Subject

General Computer Science

Reference29 articles.

1. Feature selection and classification using the CatBoost method for improving the performance of predicting Parkinson’s disease;Al-Sarem,2021

2. An algorithm for Parkinson’s disease speech classification based on isolated words analysis;Amato;Health Information Science and Systems,2021

3. Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease;Balaji;Applied Soft Computing,2020

4. Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease;Balaji;Medical Engineering & Physics,2021a

5. Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network;Balaji;Applied Soft Computing,2021b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3