An algorithm for Parkinson’s disease speech classification based on isolated words analysis

Author:

Amato FedericaORCID,Borzì Luigi,Olmo Gabriella,Orozco-Arroyave Juan Rafael

Abstract

Abstract Introduction Automatic assessment of speech impairment is a cutting edge topic in Parkinson’s disease (PD). Language disorders are known to occur several years earlier than typical motor symptoms, thus speech analysis may contribute to the early diagnosis of the disease. Moreover, the remote monitoring of dysphonia could allow achieving an effective follow-up of PD clinical condition, possibly performed in the home environment. Methods In this work, we performed a multi-level analysis, progressively combining features extracted from the entire signal, the voiced segments, and the on-set/off-set regions, leading to a total number of 126 features. Furthermore, we compared the performance of early and late feature fusion schemes, aiming to identify the best model configuration and taking advantage of having 25 isolated words pronounced by each subject. We employed data from the PC-GITA database (50 healthy controls and 50 PD patients) for validation and testing. Results We implemented an optimized k-Nearest Neighbours model for the binary classification of PD patients versus healthy controls. We achieved an accuracy of 99.4% in 10-fold cross-validation and 94.3% in testing on the PC-GITA database (average value of male and female subjects). Conclusion The promising performance yielded by our model confirms the feasibility of automatic assessment of PD using voice recordings. Moreover, a post-hoc analysis of the most relevant features discloses the option of voice processing using a simple smartphone application.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid approach to detecting Parkinson's disease using spectrogram and deep learning CNN-LSTM network;International Journal of Speech Technology;2024-07-18

2. Evaluating Machine Learning-Based Feature Selection Methods for Diagnosing Parkinson's Disease Under the SVM Framework;2024 7th International Conference on Artificial Intelligence and Big Data (ICAIBD);2024-05-24

3. Identifying Parkinson’s Disease in it’s Primitive Phase using Vocal Characteristics;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

4. A Comprehensive Ensemble Machine Learning Model for Predicting Parkinson’s Disease Progression and Severity;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

5. Automated Parkinson's Disease Detection: A Review of Techniques, Datasets, Modalities, and Open Challenges;International Journal on Smart Sensing and Intelligent Systems;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3