Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble

Author:

Sarnovsky MartinORCID,Kolarik Michal

Abstract

Data streams can be defined as the continuous stream of data coming from different sources and in different forms. Streams are often very dynamic, and its underlying structure usually changes over time, which may result to a phenomenon called concept drift. When solving predictive problems using the streaming data, traditional machine learning models trained on historical data may become invalid when such changes occur. Adaptive models equipped with mechanisms to reflect the changes in the data proved to be suitable to handle drifting streams. Adaptive ensemble models represent a popular group of these methods used in classification of drifting data streams. In this paper, we present the heterogeneous adaptive ensemble model for the data streams classification, which utilizes the dynamic class weighting scheme and a mechanism to maintain the diversity of the ensemble members. Our main objective was to design a model consisting of a heterogeneous group of base learners (Naive Bayes, k-NN, Decision trees), with adaptive mechanism which besides the performance of the members also takes into an account the diversity of the ensemble. The model was experimentally evaluated on both real-world and synthetic datasets. We compared the presented model with other existing adaptive ensemble methods, both from the perspective of predictive performance and computational resource requirements.

Funder

Slovak Research and Development Agency

Publisher

PeerJ

Subject

General Computer Science

Reference79 articles.

1. Diversity of ensembles for data stream classification;Abassi,2019

2. Mining association rules between sets of items in large databases;Agrawal;ACM SIGMOD Record,1993

3. Early drift detection method;Baena-García,2006

4. A survey on feature drift adaptation: definition, benchmark, challenges and future directions;Barddal;Journal of Systems and Software,2017

5. Efficient online evaluation of big data stream classifiers;Bifet,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3