ICM ensemble with novel betting functions for concept drift

Author:

Eliades Charalambos,Papadopoulos Harris

Abstract

AbstractThis study builds upon our previous work by introducing a refined Inductive Conformal Martingale (ICM) approach for addressing Concept Drift. Specifically, we enhance our previously proposed CAUTIOUS betting function to incorporate multiple density estimators for improving detection ability. We also combine this betting function with two base estimators that have not been previously utilized within the ICM framework: the Interpolated Histogram and Nearest Neighbor Density Estimators. We assess these extensions using both a single ICM and an ensemble of ICMs. For the latter, we conduct a comprehensive experimental investigation into the influence of the ensemble size on prediction accuracy and the number of available predictions. Our experimental results on four benchmark datasets demonstrate that the proposed approach surpasses our previous methodology in terms of performance while matching or in many cases exceeding that of three contemporary state-of-the-art techniques.

Funder

Frederick University

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Bagui, S., & Jin, K. (2020). A survey of challenges facing streaming data. Transactions on Machine Learning and Artificial Intelligence, 8(4), 63–73. https://doi.org/10.14738/tmlai.84.8579

2. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2019). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363. https://doi.org/10.1109/TKDE.2018.2876857

3. Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic Learning in a Random World. https://doi.org/10.1007/b106715

4. Volkhonskiy, D., Burnaev, E., Nouretdinov, I., Gammerman, A., & Vovk, V. (2017) Inductive conformal martingales for change-point detection. In: Gammerman, A., Vovk, V., Luo, Z., Papadopoulos, H. (eds.) Proceedings of the Sixth Workshop on Conformal and Probabilistic Prediction and Applications. Proceedings of Machine Learning Research, vol. 60, pp. 132–153. PMLR, Stockholm, Sweden . http://proceedings.mlr.press/v60/volkhonskiy17a.html

5. Manokhin, V. Awesome Conformal Prediction. https://doi.org/10.5281/zenodo.6467205

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3