Alzheimer’s disease diagnosis and classification using deep learning techniques

Author:

Al Shehri Waleed

Abstract

Alzheimer’s disease is an incurable neurodegenerative disease that affects brain memory mainly in aged people. Alzheimer’s disease occurs worldwide and mainly affects people aged older than 65 years. Early diagnosis for accurate detection is needed for this disease. Manual diagnosis by health specialists is error prone and time consuming due to the large number of patients presenting with the disease. Various techniques have been applied to the diagnosis and classification of Alzheimer’s disease but there is a need for more accuracy in early diagnosis solutions. The model proposed in this research suggests a deep learning-based solution using DenseNet-169 and ResNet-50 CNN architectures for the diagnosis and classification of Alzheimer’s disease. The proposed model classifies Alzheimer’s disease into Non-Dementia, Very Mild Dementia, Mild Dementia, and Moderate Dementia. The DenseNet-169 architecture outperformed in the training and testing phases. The training and testing accuracy values for DenseNet-169 are 0.977 and 0.8382, while the accuracy values for ResNet-50 were 0.8870 and 0.8192. The proposed model is usable for real-time analysis and classification of Alzheimer’s disease.

Publisher

PeerJ

Subject

General Computer Science

Reference18 articles.

1. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: an overview;Bilal;NanoImpact,2020

2. Alzheimer’s disease classification using transfer learning;Budhiraja,2021

3. Computer aided diagnosis (CAD) for segmentation and classification of burnt human skin;Butt,2019

4. Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease;Chitradevi;Applied Soft Computing,2020

5. The neuropathological diagnosis of Alzheimer’s disease;DeTure;Molecular Neurodegeneration,2019

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3