Author:
Odimayo Simisola,Olisah Chollette C.,Mohammed Khadija
Abstract
AbstractAlzheimer’s disease (AD), the predominant form of dementia, is a growing global challenge, emphasizing the urgent need for accurate and early diagnosis. Current clinical diagnoses rely on radiologist expert interpretation, which is prone to human error. Deep learning has thus far shown promise for early AD diagnosis. However, existing methods often overlook focal structural atrophy critical for enhanced understanding of the cerebral cortex neurodegeneration. This paper proposes a deep learning framework that includes a novel structure-focused neurodegeneration CNN architecture named SNeurodCNN and an image brightness enhancement preprocessor using gamma correction. The SNeurodCNN architecture takes as input the focal structural atrophy features resulting from segmentation of brain structures captured through magnetic resonance imaging (MRI). As a result, the architecture considers only necessary CNN components, which comprises of two downsampling convolutional blocks and two fully connected layers, for achieving the desired classification task, and utilises regularisation techniques to regularise learnable parameters. Leveraging mid-sagittal and para-sagittal brain image viewpoints from the Alzheimer’s disease neuroimaging initiative (ADNI) dataset, our framework demonstrated exceptional performance. The para-sagittal viewpoint achieved 97.8% accuracy, 97.0% specificity, and 98.5% sensitivity, while the mid-sagittal viewpoint offered deeper insights with 98.1% accuracy, 97.2% specificity, and 99.0% sensitivity. Model analysis revealed the ability of SNeurodCNN to capture the structural dynamics of mild cognitive impairment (MCI) and AD in the frontal lobe, occipital lobe, cerebellum, temporal, and parietal lobe, suggesting its potential as a brain structural change digi-biomarker for early AD diagnosis. This work can be reproduced using code we made available on GitHub.
Publisher
Springer Science and Business Media LLC