Multi-granularity adaptive extractive document summarization with heterogeneous graph neural networks

Author:

Su WuORCID,Jiang Jin,Huang Kaihui

Abstract

The crucial aspect of extractive document summarization lies in understanding the interrelations between sentences. Documents inherently comprise a multitude of sentences, and sentence-level models frequently fail to consider the relationships between distantly-placed sentences, resulting in the omission of significant information in the summary. Moreover, information within documents tends to be distributed sparsely, challenging the efficacy of sentence-level models. In the realm of heterogeneous graph neural networks, it has been observed that semantic nodes with varying levels of granularity encapsulate distinct semantic connections. Initially, the incorporation of edge features into the computation of dynamic graph attention networks is performed to account for node relationships. Subsequently, given the multiplicity of topics in a document or a set of documents, a topic model is employed to extract topic-specific features and the probability distribution linking these topics with sentence nodes. Last but not least, the model defines nodes with different levels of granularity—ranging from documents and topics to sentences—and these various nodes necessitate different propagation widths and depths for capturing intricate relationships in the information being disseminated. Adaptive measures are taken to learn the importance and correlation between nodes of different granularities in terms of both width and depth. Experimental evidence from two benchmark datasets highlights the superior performance of the proposed model, as assessed by ROUGE metrics, in comparison to existing approaches, even in the absence of pre-trained language models. Additionally, an ablation study confirms the positive impact of each individual module on the model's ROUGE scores.

Funder

Hunan Province Natural Science Foundation of China under Grant

Publisher

PeerJ

Subject

General Computer Science

Reference55 articles.

1. Reaching for upper bound rouge score of extractive summarization methods;Akhmetov;PeerJ Computer Science,2022

2. Enhancing scientific papers summarization with citation graph;An,2021

3. AREDSUM: adaptive redundancy-aware iterative sentence ranking for extractive document summarization;Bi;ArXiv,2020

4. Latent Dirichlet allocation;Blei;Journal of Machine Learning Research,2003

5. How attentive are graph attention networks?;Brody;ArXiv,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3