Reaching for upper bound ROUGE score of extractive summarization methods

Author:

Akhmetov Iskander12ORCID,Mussabayev Rustam2ORCID,Gelbukh Alexander3ORCID

Affiliation:

1. Kazakh-British Technical University, Almaty, Almaty, Kazakhstan

2. Institute of Information and Computational Technologies, Almaty, Almaty, Kazakhstan

3. Instituto Politecnico Nacional, Mexico, Mexico

Abstract

The extractive text summarization (ETS) method for finding the salient information from a text automatically uses the exact sentences from the source text. In this article, we answer the question of what quality of a summary we can achieve with ETS methods? To maximize the ROUGE-1 score, we used five approaches: (1) adapted reduced variable neighborhood search (RVNS), (2) Greedy algorithm, (3) VNS initialized by Greedy algorithm results, (4) genetic algorithm, and (5) genetic algorithm initialized by the Greedy algorithm results. Furthermore, we ran experiments on articles from the arXive dataset. As a result, we found 0.59 and 0.25 scores for ROUGE-1 and ROUGE-2, respectively achievable by the approach, where the genetic algorithm initialized by the Greedy algorithm results, which happens to yield the best results out of the tested approaches. Moreover, those scores appear to be higher than scores obtained by the current state-of-the-art text summarization models: the best score in the literature for ROUGE-1 on the same data set is 0.46. Therefore, we have room for the development of ETS methods, which are now undeservedly forgotten.

Funder

Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan

CONACYT, Mexico

Secretaria de Investigación y Posgrado of the Instituto Politecnico Nacional, Mexico

Publisher

PeerJ

Subject

General Computer Science

Reference40 articles.

1. Text summarization: a brief review;Abualigah;Studies in Computational Intelligence,2020

2. Greedy optimization method for extractive summarization of scientific articles;Akhmetov;IEEE Access,2021a

3. Using k-means and variable neighborhood search for automatic summarization of scientific articles;Akhmetov,2021b

4. Dictionary of algorithms and data structures;Black,2005

5. Search Methodologies

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smooth it up!: Extractive summary coherence enhancement;Journal of Intelligent & Fuzzy Systems;2024-03-30

2. BuddyBot: AI Powered Chatbot for Enhancing English Language Learning;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

3. Overview of Approaches for Increasing Coherence in Extractive Summaries;Lecture Notes in Networks and Systems;2024

4. Multi-granularity adaptive extractive document summarization with heterogeneous graph neural networks;PeerJ Computer Science;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3