DPIF-Net: a dual path network for rural road extraction based on the fusion of global and local information

Author:

Sun Yuan1,Gu Xingfa1,Zhou Xiang1,Yang Jian1,Shen Wangyao2,Cheng Yuanlei2,Zhang Jin Ming2,Chen Yunping2

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China

2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

Abstract

Background Automatic extraction of roads from remote sensing images can facilitate many practical applications. However, thus far, thousands of kilometers or more of roads worldwide have not been recorded, especially low-grade roads in rural areas. Moreover, rural roads have different shapes and are influenced by complex environments and other interference factors, which has led to a scarcity of dedicated low level category road datasets. Methods To address these issues, based on convolutional neural networks (CNNs) and tranformers, this article proposes the Dual Path Information Fusion Network (DPIF-Net). In addition, given the severe lack of low-grade road datasets, we constructed the GaoFen-2 (GF-2) rural road dataset to address this challenge, which spans three regions in China and covers an area of over 2,300 km, almost entirely composed of low-grade roads. To comprehensively test the low-grade road extraction performance and generalization ability of the model, comparative experiments are carried out on the DeepGlobe, and Massachusetts regular road datasets. Results The results show that DPIF-Net achieves the highest IoU and F1 score on three datasets compared with methods such as U-Net, SegNet, DeepLabv3+, and D-LinkNet, with notable performance on the GF-2 dataset, reaching 0.6104 and 0.7608, respectively. Furthermore, multiple validation experiments demonstrate that DPIF-Net effectively preserves improved connectivity in low-grade road extraction with a modest parameter count of 63.9 MB. The constructed low-grade road dataset and proposed methods will facilitate further research on rural roads, which holds promise for assisting governmental authorities in making informed decisions and strategies to enhance rural road infrastructure.

Funder

Major Project of High Resolution Earth Observation System

China Scholarship Council

Publisher

PeerJ

Reference40 articles.

1. Deep learning approaches applied to remote sensing datasets for road extraction: a state-of-the-art review;Abdollahi;Remote Sensing,2020

2. Segnet: a deep convolutional encoder–decoder architecture for image segmentation;Badrinarayanan;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

3. RoadTracer: automatic extraction of road networks from aerial images;Bastani,2018

4. Improved road connectivity by joint learning of orientation and segmentation;Batra,2019

5. Linknet: exploiting encoder representations for efficient semantic segmentation;Chaurasia,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3