Exclusive use and evaluation of inheritance metrics viability in software fault prediction—an experimental study

Author:

Aziz Syed Rashid1,Khan Tamim Ahmed1,Nadeem Aamer2

Affiliation:

1. Department of Software Engineering, Bahria University, Islamabad, Pakistan

2. Department of Software Engineering, Capital University of Science and Technology, Islamabad, Pakistan

Abstract

Software Fault Prediction (SFP) assists in the identification of faulty classes, and software metrics provide us with a mechanism for this purpose. Besides others, metrics addressing inheritance in Object-Oriented (OO) are important as these measure depth, hierarchy, width, and overriding complexity of the software. In this paper, we evaluated the exclusive use, and viability of inheritance metrics in SFP through experiments. We perform a survey of inheritance metrics whose data sets are publicly available, and collected about 40 data sets having inheritance metrics. We cleaned, and filtered them, and captured nine inheritance metrics. After preprocessing, we divided selected data sets into all possible combinations of inheritance metrics, and then we merged similar metrics. We then formed 67 data sets containing only inheritance metrics that have nominal binary class labels. We performed a model building, and validation for Support Vector Machine(SVM). Results of Cross-Entropy, Accuracy, F-Measure, and AUC advocate viability of inheritance metrics in software fault prediction. Furthermore, ic, noc, and dit metrics are helpful in reduction of error entropy rate over the rest of the 67 feature sets.

Publisher

PeerJ

Subject

General Computer Science

Reference191 articles.

1. SoftLAB. ar 1-6, February 2009,2009

2. Maintainability based risk assessment in adaptive maintenance context;Abdelmoez,2006

3. Quantifying software architectures: an analysis of change propagation probabilities;Abdelmoez,2005

4. Object-oriented software engineering: measuring and controlling the development process;Abreu,1994

5. The impact of software fault prediction in realworld application: An automated approach for software engineering;Ahmed;Proceedings of 2020 the 6th International Conference on Computing and Data Engineering,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3