DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways

Author:

Xi Jianing1,Wang Minghui12,Li Ao12

Affiliation:

1. School of Information Science and Technology, University of Science and Technology of China, Hefei, China

2. Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China

Abstract

Cataloging mutated driver genes that confer a selective growth advantage for tumor cells from sporadic passenger mutations is a critical problem in cancer genomic research. Previous studies have reported that some driver genes are not highly frequently mutated and cannot be tested as statistically significant, which complicates the identification of driver genes. To address this issue, some existing approaches incorporate prior knowledge from an interactome to detect driver genes which may be dysregulated by interaction network context. However, altered operations of many pathways in cancer progression have been frequently observed, and prior knowledge from pathways is not exploited in the driver gene identification task. In this paper, we introduce a driver gene prioritization method called driver gene identification through pathway and interactome information (DGPathinter), which is based on knowledge-based matrix factorization model with prior knowledge from both interactome and pathways incorporated. When DGPathinter is applied on somatic mutation datasets of three types of cancers and evaluated by known driver genes, the prioritizing performances of DGPathinter are better than the existing interactome driven methods. The top ranked genes detected by DGPathinter are also significantly enriched for known driver genes. Moreover, most of the top ranked scored pathways given by DGPathinter are also cancer progression-associated pathways. These results suggest that DGPathinter is a useful tool to identify potential driver genes.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3