Evolutionary Mechanism Based Conserved Gene Expression Biclustering Module Analysis for Breast Cancer Genomics

Author:

Yuan Wei1,Li Yaming1,Han Zhengpan1,Chen Yu1,Xie Jinnan1,Chen Jianguo1,Bi Zhisheng1ORCID,Xi Jianing1ORCID

Affiliation:

1. School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China

Abstract

The identification of significant gene biclusters with particular expression patterns and the elucidation of functionally related genes within gene expression data has become a critical concern due to the vast amount of gene expression data generated by RNA sequencing technology. In this paper, a Conserved Gene Expression Module based on Genetic Algorithm (CGEMGA) is proposed. Breast cancer data from the TCGA database is used as the subject of this study. The p-values from Fisher’s exact test are used as evaluation metrics to demonstrate the significance of different algorithms, including the Cheng and Church algorithm, CGEM algorithm, etc. In addition, the F-test is used to investigate the difference between our method and the CGEM algorithm. The computational cost of the different algorithms is further investigated by calculating the running time of each algorithm. Finally, the established driver genes and cancer-related pathways are used to validate the process. The results of 10 independent runs demonstrate that CGEMGA has a superior average p-value of 1.54 × 10−4 ± 3.06 × 10−5 compared to all other algorithms. Furthermore, our approach exhibits consistent performance across all methods. The F-test yields a p-value of 0.039, indicating a significant difference between our approach and the CGEM. Computational cost statistics also demonstrate that our approach has a significantly shorter average runtime of 5.22 × 100 ± 1.65 × 10−1 s compared to the other algorithms. Enrichment analysis indicates that the genes in our approach are significantly enriched for driver genes. Our algorithm is fast and robust, efficiently extracting co-expressed genes and associated co-expression condition biclusters from RNA-seq data.

Funder

Guangzhou Education Science Planning Project

Special Foundation in Department of Higher Education of Guangdong

Discipline Construction Project of Guangzhou Medical University

Guangzhou Basic and Applied Basic Research Foundation

Guangdong Basic and Applied Basic Research Foundation

Industry-university Cooperative Education Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3