Abstract
Social media is a vital source to produce textual data, further utilized in various research fields. It has been considered an essential foundation for organizations to get valuable data to assess the users’ thoughts and opinions on a specific topic. Text classification is a procedure to assign tags to predefined classes automatically based on their contents. The aspect-based sentiment analysis to classify the text is challenging. Every work related to sentiment analysis approached this issue as the current research usually discusses the document-level and overall sentence-level analysis rather than the particularities of the sentiments. This research aims to use Twitter data to perform a finer-grained sentiment analysis at aspect-level by considering explicit and implicit aspects. This study proposes a new Multi-level Hybrid Aspect-Based Sentiment Classification (MuLeHyABSC) approach by embedding a feature ranking process with an amendment of feature selection method for Twitter and sentiment classification comprising of Artificial Neural Network; Multi-Layer Perceptron (MLP) is used to attain improved results. In this study, different machine learning classification methods were also implemented, including Random Forest (RF), Support Vector Classifier (SVC), and seven more classifiers to compare with the proposed classification method. The implementation of the proposed hybrid method has shown better performance and the efficiency of the proposed system was validated on multiple Twitter datasets to manifest different domains. We achieved better results for all Twitter datasets used for the validation purpose of the proposed method with an accuracy of 78.99%, 84.09%, 80.38%, 82.37%, and 84.72%, respectively, compared to the baseline approaches. The proposed approach revealed that the new hybrid aspect-based text classification functionality is enhanced, and it outperformed the existing baseline methods for sentiment classification.
Reference39 articles.
1. A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis;Akhtar,2017
2. An ensemble classification system for twitter sentiment analysis;Ankit;Procedia Computer Science,2018
3. Evaluating deep learning models for sentiment classification;Ay Karakuş;Concurrency and Computation: Practice and Experience,2018
4. Hybrid attribute based sentiment classification of online reviews for consumer intelligence;Bansal;Applied Intelligence,2019
5. A lexicon-based approach for sentiment classification of amazon books reviews in italian language;Chiavetta,2016
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献