Prediction of futile recanalisation after endovascular treatment in acute ischaemic stroke: development and validation of a hybrid machine learning model

Author:

Nie XimingORCID,Yang Jinxu,Li Xinxin,Zhan Tianming,Liu Dongdong,Yan Hongyi,Wei YufeiORCID,Liu Xiran,Chen Jiaping,Gong Guoyang,Wu ZhenzhouORCID,Yang Zhonghua,Wen Miao,Gu Weibin,Pan Yuesong,Jiang YongORCID,Meng Xia,Liu TaoORCID,Cheng Jian,Li ZixiaoORCID,Miao Zhongrong,Liu LipingORCID

Abstract

BackgroundIdentification of futile recanalisation following endovascular therapy (EVT) in patients with acute ischaemic stroke is both crucial and challenging. Here, we present a novel risk stratification system based on hybrid machine learning method for predicting futile recanalisation.MethodsHybrid machine learning models were developed to address six clinical scenarios within the EVT and perioperative management workflow. These models were trained on a prospective database using hybrid feature selection technique to predict futile recanalisation following EVT. The optimal model was validated and compared with existing models and scoring systems in a multicentre prospective cohort to develop a hybrid machine learning-based risk stratification system for futile recanalisation prediction.ResultsUsing a hybrid feature selection approach, we trained and tested multiple classifiers on two independent patient cohorts (n=1122) to develop a hybrid machine learning-based prediction model. The model demonstrated superior discriminative ability compared with other models and scoring systems (area under the curve=0.80, 95% CI 0.73 to 0.87) and was transformed into a web application (RESCUE-FR Index) that provides a risk stratification system for individual prediction (accessible online at fr-index.biomind.cn/RESCUE-FR/).ConclusionsThe proposed hybrid machine learning approach could be used as an individualised risk prediction model to facilitate adherence to clinical practice guidelines and shared decision-making for optimal candidate selection and prognosis assessment in patients undergoing EVT.

Funder

Beijing Municipal Administration of Hospitals’ Youth Programme

National Natural Science Foundation of China

Publisher

BMJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3