Abstract
BackgroundIdentification of futile recanalisation following endovascular therapy (EVT) in patients with acute ischaemic stroke is both crucial and challenging. Here, we present a novel risk stratification system based on hybrid machine learning method for predicting futile recanalisation.MethodsHybrid machine learning models were developed to address six clinical scenarios within the EVT and perioperative management workflow. These models were trained on a prospective database using hybrid feature selection technique to predict futile recanalisation following EVT. The optimal model was validated and compared with existing models and scoring systems in a multicentre prospective cohort to develop a hybrid machine learning-based risk stratification system for futile recanalisation prediction.ResultsUsing a hybrid feature selection approach, we trained and tested multiple classifiers on two independent patient cohorts (n=1122) to develop a hybrid machine learning-based prediction model. The model demonstrated superior discriminative ability compared with other models and scoring systems (area under the curve=0.80, 95% CI 0.73 to 0.87) and was transformed into a web application (RESCUE-FR Index) that provides a risk stratification system for individual prediction (accessible online at fr-index.biomind.cn/RESCUE-FR/).ConclusionsThe proposed hybrid machine learning approach could be used as an individualised risk prediction model to facilitate adherence to clinical practice guidelines and shared decision-making for optimal candidate selection and prognosis assessment in patients undergoing EVT.
Funder
Beijing Municipal Administration of Hospitals’ Youth Programme
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献