FDup: a framework for general-purpose and efficient entity deduplication of record collections

Author:

De Bonis Michele1,Manghi Paolo1,Atzori Claudio1

Affiliation:

1. Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI), Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

Abstract

Deduplication is a technique aiming at identifying and resolving duplicate metadata records in a collection. This article describes FDup (Flat Collections Deduper), a general-purpose software framework supporting a complete deduplication workflow to manage big data record collections: metadata record data model definition, identification of candidate duplicates, identification of duplicates. FDup brings two main innovations: first, it delivers a full deduplication framework in a single easy-to-use software package based on Apache Spark Hadoop framework, where developers can customize the optimal and parallel workflow steps of blocking, sliding windows, and similarity matching function via an intuitive configuration file; second, it introduces a novel approach to improve performance, beyond the known techniques of “blocking” and “sliding window”, by introducing a smart similarity matching function T-match. T-match is engineered as a decision tree that drives the comparisons of the fields of two records as branches of predicates and allows for successful or unsuccessful early-exit strategies. The efficacy of the approach is proved by experiments performed over big data collections of metadata records in the OpenAIRE Research Graph, a known open access knowledge base in Scholarly communication.

Funder

EU H2020 project OpenAIRE-Nexus

Publisher

PeerJ

Subject

General Computer Science

Reference17 articles.

1. Gdup: de-duplication of scholarly communication big graphs;Atzori,2018

2. A record linkage-based data deduplication framework with datacleaner extension;Azeroual;Multimodal Technologies and Interaction,2022

3. Data association methods with applications to law enforcement;Brown;Decision Support Systems,2003

4. 10mi openaire publications dump;De Bonis,2021

5. miconis/fdup: Fdup v4.1.10;De Bonis,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Graph Neural Network Approach for Evaluating Correctness of Groups of Duplicates;Linking Theory and Practice of Digital Libraries;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3