A Graph Neural Network Approach for Evaluating Correctness of Groups of Duplicates

Author:

De Bonis MicheleORCID,Minutella Filippo,Falchi FabrizioORCID,Manghi PaoloORCID

Abstract

AbstractUnlabeled entity deduplication is a relevant task already studied in the recent literature. Most methods can be traced back to the following workflow: entity blocking phase, in-block pairwise comparisons between entities to draw similarity relations, closure of the resulting meshes to create groups of duplicate entities, and merging group entities to remove disambiguation. Such methods are effective but still not good enough whenever a very low false positive rate is required. In this paper, we present an approach for evaluating the correctness of “groups of duplicates”, which can be used to measure the group’s accuracy hence its likelihood of false-positiveness. Our novel approach is based on a Graph Neural Network that exploits and combines the concept of Graph Attention and Long Short Term Memory (LSTM). The accuracy of the proposed approach is verified in the context of Author Name Disambiguation applied to a curated dataset obtained as a subset of the OpenAIRE Graph that includes PubMed publications with at least one ORCID identifier.

Publisher

Springer Nature Switzerland

Reference20 articles.

1. Manghi, P., Atzori, C., De Bonis, M., Bardi, A.: Entity deduplication in big data graphs for scholarly communication. Data Technol. Appl. 54(4), 409–435 (2020)

2. He, Q., Li, Z., Zhang, X.: Data deduplication techniques. In: 2010 International Conference on Future Information Technology and Management Engineering, vol. 1, pp. 430–433. IEEE (2010)

3. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with hadoop. Proc. VLDB Endow. 5(12), 1878–1881 (2012). https://doi.org/10.14778/2367502.2367527

4. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6(1), 1–23 (2019). https://doi.org/10.1186/s40649-019-0069-y

5. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3