A survey on exponential random graph models: an application perspective

Author:

Ghafouri Saeid1,Khasteh Seyed Hossein1

Affiliation:

1. School of computer engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

The uncertainty underlying real-world phenomena has attracted attention toward statistical analysis approaches. In this regard, many problems can be modeled as networks. Thus, the statistical analysis of networked problems has received special attention from many researchers in recent years. Exponential Random Graph Models, known as ERGMs, are one of the popular statistical methods for analyzing the graphs of networked data. ERGM is a generative statistical network model whose ultimate goal is to present a subset of networks with particular characteristics as a statistical distribution. In the context of ERGMs, these graph’s characteristics are called statistics or configurations. Most of the time they are the number of repeated subgraphs across the graphs. Some examples include the number of triangles or the number of cycle of an arbitrary length. Also, any other census of the graph, as with the edge density, can be considered as one of the graph’s statistics. In this review paper, after explaining the building blocks and classic methods of ERGMs, we have reviewed their newly presented approaches and research papers. Further, we have conducted a comprehensive study on the applications of ERGMs in many research areas which to the best of our knowledge has not been done before. This review paper can be used as an introduction for scientists from various disciplines whose aim is to use ERGMs in some networked data in their field of expertise.

Publisher

PeerJ

Subject

General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring user interaction patterns in an online physician interactive community based on exponential random graph models;Humanities and Social Sciences Communications;2024-02-01

2. The application of exponential random graph models to collaboration networks in biomedical and health sciences: a review;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-01-23

3. Critical phenomena in complex networks: from scale-free to random networks;The European Physical Journal B;2023-11

4. A Framework for Analyzing the Robustness of Graph Models;2023 IEEE High Performance Extreme Computing Conference (HPEC);2023-09-25

5. Network Estimation by Mixing: Adaptivity and More;Journal of the American Statistical Association;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3