The application of exponential random graph models to collaboration networks in biomedical and health sciences: a review

Author:

Yu FeiORCID,El-Zaatari Helal M.ORCID,Kosorok Michael R.ORCID,Carnegie Andrea,Dave GauravORCID

Abstract

AbstractCollaboration has become crucial in solving scientific problems in biomedical and health sciences. There is a growing interest in applying social network analysis to professional associations aiming to leverage expertise and resources for optimal synergy. As a set of computational and statistical methods for analyzing social networks, exponential random graph models (ERGMs) examine complex collaborative networks due to their uniqueness of allowing for non-independent variables in network modeling. This study took a review approach to collect and analyze ERGM applications in health sciences by following the protocol of a systematic review. We included a total of 30 studies. The bibliometric characteristics revealed significant authors, institutions, countries, funding agencies, and citation impact associated with the publications. In addition, we observed five types of ERGMs for network modeling (standard ERGM and its extensions—Bayesian ERGM, temporal ERGM, separable temporal ERGM, and multilevel ERGM). Most studies (80%) used the standard ERGM, which possesses only endogenous and exogenous variables examining either micro- (individual-based) or macro-level (organization-based) collaborations without exploring how the links between individuals and organizations contribute to the overall network structure. Our findings help researchers (a) understand the extant research landscape of ERGM applications in health sciences, (b) learn to control and predict connection occurrence in a collaborative network, and (c) better design ERGM-applied studies to examine complex relations and social system structure, which is native to professional collaborations.

Funder

National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

Subject

Urology,Computer Science (miscellaneous),Computer Networks and Communications,Computer Science Applications,Computational Mathematics,Biochemistry, Genetics and Molecular Biology (miscellaneous)

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3