Classification of Alzheimer’s disease stages from magnetic resonance images using deep learning

Author:

Mora-Rubio Alejandro1ORCID,Bravo-Ortíz Mario Alejandro1,Quiñones Arredondo Sebastián1,Saborit Torres Jose Manuel2,Ruz Gonzalo A.345ORCID,Tabares-Soto Reinel156

Affiliation:

1. Department of Electronics and Automation, Universidad Autonóma de Manizales, Manizales, Caldas, Colombia

2. Unidad Mixta de Imagen Biomédica FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana, Valencia, Spain

3. Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile

4. Data Observatory Foundation, Santiago, Chile

5. Facultad de Ingeniería y Ciencias, Universidad Asdolfo Ibáñez, Santiago, Chile

6. Department of Systems and Informatics, Universidad de Caldas, Manizales, Caldas, Colombia

Abstract

Alzheimer’s disease (AD) is a progressive type of dementia characterized by loss of memory and other cognitive abilities, including speech. Since AD is a progressive disease, detection in the early stages is essential for the appropriate care of the patient throughout its development, going from asymptomatic to a stage known as mild cognitive impairment (MCI), and then progressing to dementia and severe dementia; is worth mentioning that everyone suffers from cognitive impairment to some degree as we age, but the relevant task here is to identify which people are most likely to develop AD. Along with cognitive tests, evaluation of the brain morphology is the primary tool for AD diagnosis, where atrophy and loss of volume of the frontotemporal lobe are common features in patients who suffer from the disease. Regarding medical imaging techniques, magnetic resonance imaging (MRI) scans are one of the methods used by specialists to assess brain morphology. Recently, with the rise of deep learning (DL) and its successful implementation in medical imaging applications, it is of growing interest in the research community to develop computer-aided diagnosis systems that can help physicians to detect this disease, especially in the early stages where macroscopic changes are not so easily identified. This article presents a DL-based approach to classifying MRI scans in the different stages of AD, using a curated set of images from Alzheimer’s Disease Neuroimaging Initiative and Open Access Series of Imaging Studies databases. Our methodology involves image pre-processing using FreeSurfer, spatial data-augmentation operations, such as rotation, flip, and random zoom during training, and state-of-the-art 3D convolutional neural networks such as EfficientNet, DenseNet, and a custom siamese network, as well as the relatively new approach of vision transformer architecture. With this approach, the best detection percentage among all four architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for MCI vs. Control, and 67% for Early MCI vs. Control.

Publisher

PeerJ

Subject

General Computer Science

Reference35 articles.

1. Alzheimer’s disease;Ballard;The Lancet,2011

2. Cervical cancer classification using convolutional neural networks, transfer learning and data augmentation;Bravo-Ortiz;Revista EIA,2021

3. Deep learning in medical image analysis;Chan,2020

4. Combining convolutional and recurrent neural networks for alzheimer’s disease diagnosis using pet images;Cheng,2017

5. Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease;Chitradevi;Applied Soft Computing,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3