Categorization of Alzheimer’s disease stages using deep learning approaches with McNemar’s test

Author:

Şener Begüm1,Acici Koray2,Sümer Emre1

Affiliation:

1. Department of Computer Engineering, Başkent University, Ankara, Başkent University, Ankara, Turkey

2. Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara University, Ankara, Turkey

Abstract

Early diagnosis is crucial in Alzheimer’s disease both clinically and for preventing the rapid progression of the disease. Early diagnosis with awareness studies of the disease is of great importance in terms of controlling the disease at an early stage. Additionally, early detection can reduce treatment costs associated with the disease. A study has been carried out on this subject to have the great importance of detecting Alzheimer’s disease at a mild stage and being able to grade the disease correctly. This study’s dataset consisting of MRI images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was split into training and testing sets, and deep learning-based approaches were used to obtain results. The dataset consists of three classes: Alzheimer’s disease (AD), Cognitive Normal (CN), and Mild Cognitive Impairment (MCI). The achieved results showed an accuracy of 98.94% for CN vs AD in the one vs one (1 vs 1) classification with the EfficientNetB0 model and 99.58% for AD vs CNMCI in the one vs All (1 vs All) classification with AlexNet model. In addition, in the study, an accuracy of 98.42% was obtained with the EfficientNet121 model in MCI vs CN classification. These results indicate the significant potential for mild stage Alzheimer’s disease detection of Alzheimer’s disease. Early detection of the disease in the mild stage is a critical factor in preventing the progression of Alzheimer’s disease. In addition, a variant of the non-parametric statistical McNemar’s Test was applied to determine the statistical significance of the results obtained in the study. Statistical significance of 1 vs 1 and 1 vs all classifications were obtained for EfficientNetB0, DenseNet, and AlexNet models.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3