Boolean logic algebra driven similarity measure for text based applications

Author:

Abdalla Hassan I.1,Amer Ali A.2ORCID

Affiliation:

1. College of Technological Innovation, Zayed University, Abu Dhabi, Abu Dhabi, United Arab Emirates

2. Computer Science Department, Taiz University, Taiz, Yemen

Abstract

In Information Retrieval (IR), Data Mining (DM), and Machine Learning (ML), similarity measures have been widely used for text clustering and classification. The similarity measure is the cornerstone upon which the performance of most DM and ML algorithms is completely dependent. Thus, till now, the endeavor in literature for an effective and efficient similarity measure is still immature. Some recently-proposed similarity measures were effective, but have a complex design and suffer from inefficiencies. This work, therefore, develops an effective and efficient similarity measure of a simplistic design for text-based applications. The measure developed in this work is driven by Boolean logic algebra basics (BLAB-SM), which aims at effectively reaching the desired accuracy at the fastest run time as compared to the recently developed state-of-the-art measures. Using the term frequency–inverse document frequency (TF-IDF) schema, the K-nearest neighbor (KNN), and the K-means clustering algorithm, a comprehensive evaluation is presented. The evaluation has been experimentally performed for BLAB-SM against seven similarity measures on two most-popular datasets, Reuters-21 and Web-KB. The experimental results illustrate that BLAB-SM is not only more efficient but also significantly more effective than state-of-the-art similarity measures on both classification and clustering tasks.

Funder

Zayed University, UAE

Publisher

PeerJ

Subject

General Computer Science

Reference41 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neighboring-Aware Hierarchical Clustering;International Journal on Semantic Web and Information Systems;2024-05-23

2. On the Impact of Jaccard Fusion with Numerical Measures for Collaborative Filtering Enhancement;2023-08-29

3. An experimental study on the performance of collaborative filtering based on user reviews for large-scale datasets;PeerJ Computer Science;2023-08-25

4. Numerical Similarity Measures Versus Jaccard for Collaborative Filtering;Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023;2023

5. The Impact of Data Normalization on KNN Rendering;Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3